Papers
Topics
Authors
Recent
2000 character limit reached

Finite-Time Analysis of Temporal Difference Learning: Discrete-Time Linear System Perspective (2204.10479v6)

Published 22 Apr 2022 in cs.LG, cs.SY, and eess.SY

Abstract: TD-learning is a fundamental algorithm in the field of reinforcement learning (RL), that is employed to evaluate a given policy by estimating the corresponding value function for a Markov decision process. While significant progress has been made in the theoretical analysis of TD-learning, recent research has uncovered guarantees concerning its statistical efficiency by developing finite-time error bounds. This paper aims to contribute to the existing body of knowledge by presenting a novel finite-time analysis of tabular temporal difference (TD) learning, which makes direct and effective use of discrete-time stochastic linear system models and leverages Schur matrix properties. The proposed analysis can cover both on-policy and off-policy settings in a unified manner. By adopting this approach, we hope to offer new and straightforward templates that not only shed further light on the analysis of TD-learning and related RL algorithms but also provide valuable insights for future research in this domain.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.