Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

SoftEdge: Regularizing Graph Classification with Random Soft Edges (2204.10390v2)

Published 21 Apr 2022 in cs.LG and cs.AI

Abstract: Augmented graphs play a vital role in regularizing Graph Neural Networks (GNNs), which leverage information exchange along edges in graphs, in the form of message passing, for learning. Due to their effectiveness, simple edge and node manipulations (e.g., addition and deletion) have been widely used in graph augmentation. Nevertheless, such common augmentation techniques can dramatically change the semantics of the original graph, causing overaggressive augmentation and thus under-fitting in the GNN learning. To address this problem arising from dropping or adding graph edges and nodes, we propose SoftEdge, which assigns random weights to a portion of the edges of a given graph for augmentation. The synthetic graph generated by SoftEdge maintains the same nodes and their connectivities as the original graph, thus mitigating the semantic changes of the original graph. We empirically show that this simple method obtains superior accuracy to popular node and edge manipulation approaches and notable resilience to the accuracy degradation with the GNN depth.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)