Papers
Topics
Authors
Recent
2000 character limit reached

A Framework for Interactive Knowledge-Aided Machine Teaching (2204.10357v1)

Published 21 Apr 2022 in cs.AI, cs.HC, and cs.LG

Abstract: Machine Teaching (MT) is an interactive process where humans train a machine learning model by playing the role of a teacher. The process of designing an MT system involves decisions that can impact both efficiency of human teachers and performance of machine learners. Previous research has proposed and evaluated specific MT systems but there is limited discussion on a general framework for designing them. We propose a framework for designing MT systems and also detail a system for the text classification problem as a specific instance. Our framework focuses on three components i.e. teaching interface, machine learner, and knowledge base; and their relations describe how each component can benefit the others. Our preliminary experiments show how MT systems can reduce both human teaching time and machine learner error rate.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.