Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

HEATGait: Hop-Extracted Adjacency Technique in Graph Convolution based Gait Recognition (2204.10238v1)

Published 21 Apr 2022 in cs.CV

Abstract: Biometric authentication using gait has become a promising field due to its unobtrusive nature. Recent approaches in model-based gait recognition techniques utilize spatio-temporal graphs for the elegant extraction of gait features. However, existing methods often rely on multi-scale operators for extracting long-range relationships among joints resulting in biased weighting. In this paper, we present HEATGait, a gait recognition system that improves the existing multi-scale graph convolution by efficient hop-extraction technique to alleviate the issue. Combined with preprocessing and augmentation techniques, we propose a powerful feature extractor that utilizes ResGCN to achieve state-of-the-art performance in model-based gait recognition on the CASIA-B gait dataset.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.