Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maximizing the Influence of Bichromatic Reverse k Nearest Neighbors in Geo-Social Networks (2204.10203v2)

Published 21 Apr 2022 in cs.DB and cs.SI

Abstract: Geo-social networks offer opportunities for the marketing and promotion of geo-located services. In this setting, we explore a new problem, called Maximizing the Influence of Bichromatic Reverse k Nearest Neighbors (MaxInfBRkNN). The objective is to find a set of points of interest (POIs), which are geo-textually and socially attractive to social influencers who are expected to largely promote the POIs through online influence propagation. In other words, the problem aims to detect an optimal set of POIs with the largest word-of-mouth (WOM) marketing potential. This functionality is useful in various real-life applications, including social advertising, location-based viral marketing, and personalized POI recommendation. However, solving MaxInfBRkNN with theoretical guarantees is challenging, because of the prohibitive overheads on BRkNN retrieval in geo-social networks, and the NP and #P-hardness in finding the optimal POI set. To achieve practical solutions, we present a framework with carefully designed indexes, efficient batch BRkNN processing algorithms, and alternative POI selection policies that support both approximate and heuristic solutions. Extensive experiments on real and synthetic datasets demonstrate the good performance of our proposed methods.

Summary

We haven't generated a summary for this paper yet.