Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Multimodal Hate Speech Detection from Bengali Memes and Texts (2204.10196v3)

Published 19 Apr 2022 in cs.CL and cs.AI

Abstract: Numerous ML and deep learning (DL)-based approaches have been proposed to utilize textual data from social media for anti-social behavior analysis like cyberbullying, fake news detection, and identification of hate speech mainly for highly-resourced languages such as English. However, despite having a lot of diversity and millions of native speakers, some languages like Bengali are under-resourced, which is due to a lack of computational resources for NLP. Similar to other languages, Bengali social media contents also include images along with texts (e.g., multimodal memes are posted by embedding short texts into images on Facebook). Therefore, only the textual data is not enough to judge them since images might give extra context to make a proper judgement. This paper is about hate speech detection from multimodal Bengali memes and texts. We prepared the only multimodal hate speech dataset for-a-kind of problem for Bengali, which we use to train state-of-the-art neural architectures (e.g., Bi-LSTM/Conv-LSTM with word embeddings, ConvNets + pre-trained LLMs, e.g., monolingual Bangla BERT, multilingual BERT-cased/uncased, and XLM-RoBERTa) to jointly analyze textual and visual information for hate speech detection. Conv-LSTM and XLM-RoBERTa models performed best for texts, yielding F1 scores of 0.78 and 0.82, respectively. As of memes, ResNet-152 and DenseNet-161 models yield F1 scores of 0.78 and 0.79, respectively. As for multimodal fusion, XLM-RoBERTa + DenseNet-161 performed the best, yielding an F1 score of 0.83. Our study suggests that text modality is most useful for hate speech detection, while memes are moderately useful.

Citations (24)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.