Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

NAND-SPIN-Based Processing-in-MRAM Architecture for Convolutional Neural Network Acceleration (2204.09989v1)

Published 21 Apr 2022 in cs.AR and cs.ET

Abstract: The performance and efficiency of running large-scale datasets on traditional computing systems exhibit critical bottlenecks due to the existing "power wall" and "memory wall" problems. To resolve those problems, processing-in-memory (PIM) architectures are developed to bring computation logic in or near memory to alleviate the bandwidth limitations during data transmission. NAND-like spintronics memory (NAND-SPIN) is one kind of promising magnetoresistive random-access memory (MRAM) with low write energy and high integration density, and it can be employed to perform efficient in-memory computation operations. In this work, we propose a NAND-SPIN-based PIM architecture for efficient convolutional neural network (CNN) acceleration. A straightforward data mapping scheme is exploited to improve the parallelism while reducing data movements. Benefiting from the excellent characteristics of NAND-SPIN and in-memory processing architecture, experimental results show that the proposed approach can achieve $\sim$2.6$\times$ speedup and $\sim$1.4$\times$ improvement in energy efficiency over state-of-the-art PIM solutions.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.