NAND-SPIN-Based Processing-in-MRAM Architecture for Convolutional Neural Network Acceleration (2204.09989v1)
Abstract: The performance and efficiency of running large-scale datasets on traditional computing systems exhibit critical bottlenecks due to the existing "power wall" and "memory wall" problems. To resolve those problems, processing-in-memory (PIM) architectures are developed to bring computation logic in or near memory to alleviate the bandwidth limitations during data transmission. NAND-like spintronics memory (NAND-SPIN) is one kind of promising magnetoresistive random-access memory (MRAM) with low write energy and high integration density, and it can be employed to perform efficient in-memory computation operations. In this work, we propose a NAND-SPIN-based PIM architecture for efficient convolutional neural network (CNN) acceleration. A straightforward data mapping scheme is exploited to improve the parallelism while reducing data movements. Benefiting from the excellent characteristics of NAND-SPIN and in-memory processing architecture, experimental results show that the proposed approach can achieve $\sim$2.6$\times$ speedup and $\sim$1.4$\times$ improvement in energy efficiency over state-of-the-art PIM solutions.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.