Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Faster Approximate Covering of Subcurves under the Fréchet Distance (2204.09949v1)

Published 21 Apr 2022 in cs.CG

Abstract: Subtrajectory clustering is an important variant of the trajectory clustering problem, where the start and endpoints of trajectory patterns within the collected trajectory data are not known in advance. We study this problem in the form of a set cover problem for a given polygonal curve: find the smallest number $k$ of representative curves such that any point on the input curve is contained in a subcurve that has Fr\'echet distance at most a given $\Delta$ to a representative curve. We focus on the case where the representative curves are line segments and approach this NP-hard problem with classical techniques from the area of geometric set cover: we use a variant of the multiplicative weights update method which was first suggested by Br\"onniman and Goodrich for set cover instances with small VC-dimension. We obtain a bicriteria-approximation algorithm that computes a set of $O(k\log(k))$ line segments that cover a given polygonal curve of $n$ vertices under Fr\'echet distance at most $O(\Delta)$. We show that the algorithm runs in $\widetilde{O}(k2 n + k n3)$ time in expectation and uses $ \widetilde{O}(k n + n3)$ space. For two dimensional input curves that are $c$-packed, we bound the expected running time by $\widetilde{O}(k2 c2 n)$ and the space by $ \widetilde{O}(kn + c2 n)$. In $\mathbb{R}d$ the dependency on $n$ instead is quadratic. In addition, we present a variant of the algorithm that uses implicit weight updates on the candidate set and thereby achieves near-linear running time in $n$ without any assumptions on the input curve, while keeping the same approximation bounds. This comes at the expense of a small (polylogarithmic) dependency on the relative arclength.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.