Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Do Human Mobility Network Analyses Produced from Different Location-based Data Sources Yield Similar Results across Scales? (2204.09915v1)

Published 21 Apr 2022 in cs.SI and physics.soc-ph

Abstract: The burgeoning availability of sensing technology and location-based data is driving the expansion of analysis of human mobility networks in science and engineering research, as well as in epidemic forecasting and mitigation, urban planning, traffic engineering, emergency response, and business development. However, studies employ datasets provided by different location-based data providers, and the extent to which the human mobility measures and results obtained from different datasets are comparable is not known. To address this gap, in this study, we examined three prominent location-based data sources: Spectus, X-Mode, and Veraset to analyze human mobility networks across metropolitan areas at different scales: global, sub-structure, and microscopic. Dissimilar results were obtained from the three datasets, suggesting the sensitivity of network models and measures to datasets. This finding has important implications for building generalized theories of human mobility and urban dynamics based on different datasets. The findings also highlighted the need for ground-truthed human movement datasets to serve as the benchmark for testing the representativeness of human mobility datasets. Researchers and decision-makers across different fields of science and technology should recognize the sensitivity of human mobility results to dataset choice and develop procedures for ground-truthing the selected datasets in terms of representativeness of data points and transferability of results.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.