Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Spurious Correlations in Reference-Free Evaluation of Text Generation (2204.09890v1)

Published 21 Apr 2022 in cs.CL

Abstract: Model-based, reference-free evaluation metrics have been proposed as a fast and cost-effective approach to evaluate Natural Language Generation (NLG) systems. Despite promising recent results, we find evidence that reference-free evaluation metrics of summarization and dialog generation may be relying on spurious correlations with measures such as word overlap, perplexity, and length. We further observe that for text summarization, these metrics have high error rates when ranking current state-of-the-art abstractive summarization systems. We demonstrate that these errors can be mitigated by explicitly designing evaluation metrics to avoid spurious features in reference-free evaluation.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.