Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Non-autoregressive Model for Full-line Code Completion (2204.09877v1)

Published 21 Apr 2022 in cs.SE

Abstract: Code completion tools are frequently used by software developers to accelerate software development by suggesting the following code elements. Completing a sequence of code tokens (e.g., a full line of code) has been proved more efficient than predicting a single token at a time. To complete the code sequence, researchers are employing AutoRegressive (AR) decoders to generate tokens in a left-to-right, token-by-token fashion. Consequently, the prediction of the next token depends on all previously generated tokens, which leads to high latency in inference. To improve the efficiency and accuracy of full-line code completion, in this paper, we propose a Non-AutoRegressive (NAR) model for code completion boosted by a syntax-aware sampling strategy. Our experimental results on two widely used datasets suggest that our model outperforms both AR and NAR baselines on full-line code completion, and it is faster than the AR model with up to 9 times speed-up.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.