Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Transformer Decoders with MultiModal Regularization for Cross-Modal Food Retrieval (2204.09730v1)

Published 20 Apr 2022 in cs.CV

Abstract: Cross-modal image-recipe retrieval has gained significant attention in recent years. Most work focuses on improving cross-modal embeddings using unimodal encoders, that allow for efficient retrieval in large-scale databases, leaving aside cross-attention between modalities which is more computationally expensive. We propose a new retrieval framework, T-Food (Transformer Decoders with MultiModal Regularization for Cross-Modal Food Retrieval) that exploits the interaction between modalities in a novel regularization scheme, while using only unimodal encoders at test time for efficient retrieval. We also capture the intra-dependencies between recipe entities with a dedicated recipe encoder, and propose new variants of triplet losses with dynamic margins that adapt to the difficulty of the task. Finally, we leverage the power of the recent Vision and Language Pretraining (VLP) models such as CLIP for the image encoder. Our approach outperforms existing approaches by a large margin on the Recipe1M dataset. Specifically, we achieve absolute improvements of 8.1 % (72.6 R@1) and +10.9 % (44.6 R@1) on the 1k and 10k test sets respectively. The code is available here:https://github.com/mshukor/TFood

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.