Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Fast Post-Training Pruning Framework for Transformers (2204.09656v2)

Published 29 Mar 2022 in cs.CL and cs.LG

Abstract: Pruning is an effective way to reduce the huge inference cost of Transformer models. However, prior work on pruning Transformers requires retraining the models. This can add high training cost and high complexity to model deployment, making it difficult to use in many practical situations. To address this, we propose a fast post-training pruning framework for Transformers that does not require any retraining. Given a resource constraint and a sample dataset, our framework automatically prunes the Transformer model using structured sparsity methods. To retain high accuracy without retraining, we introduce three novel techniques: (i) a lightweight mask search algorithm that finds which heads and filters to prune based on the Fisher information; (ii) mask rearrangement that complements the search algorithm; and (iii) mask tuning that reconstructs the output activations for each layer. We apply our method to BERT-base and DistilBERT, and we evaluate its effectiveness on GLUE and SQuAD benchmarks. Our framework achieves up to 2.0x reduction in FLOPs and 1.56x speedup in inference latency, while maintaining < 1% loss in accuracy. Importantly, our framework prunes Transformers in less than 3 minutes on a single GPU, which is over two orders of magnitude faster than existing pruning approaches that retrain the models.

Citations (123)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.