Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

LAMNER: Code Comment Generation Using Character Language Model and Named Entity Recognition (2204.09654v1)

Published 5 Apr 2022 in cs.CL, cs.AI, and cs.SE

Abstract: Code comment generation is the task of generating a high-level natural language description for a given code method or function. Although researchers have been studying multiple ways to generate code comments automatically, previous work mainly considers representing a code token in its entirety semantics form only (e.g., a LLM is used to learn the semantics of a code token), and additional code properties such as the tree structure of a code are included as an auxiliary input to the model. There are two limitations: 1) Learning the code token in its entirety form may not be able to capture information succinctly in source code, and 2) The code token does not contain additional syntactic information, inherently important in programming languages. In this paper, we present LLM and Named Entity Recognition (LAMNER), a code comment generator capable of encoding code constructs effectively and capturing the structural property of a code token. A character-level LLM is used to learn the semantic representation to encode a code token. For the structural property of a token, a Named Entity Recognition model is trained to learn the different types of code tokens. These representations are then fed into an encoder-decoder architecture to generate code comments. We evaluate the generated comments from LAMNER and other baselines on a popular Java dataset with four commonly used metrics. Our results show that LAMNER is effective and improves over the best baseline model in BLEU-1, BLEU-2, BLEU-3, BLEU-4, ROUGE-L, METEOR, and CIDEr by 14.34%, 18.98%, 21.55%, 23.00%, 10.52%, 1.44%, and 25.86%, respectively. Additionally, we fused LAMNER's code representation with the baseline models, and the fused models consistently showed improvement over the non-fused models. The human evaluation further shows that LAMNER produces high-quality code comments.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.