Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Hierarchical BERT for Medical Document Understanding (2204.09600v1)

Published 11 Mar 2022 in cs.CL, cs.AI, and cs.CV

Abstract: Medical document understanding has gained much attention recently. One representative task is the International Classification of Disease (ICD) diagnosis code assignment. Existing work adopts either RNN or CNN as the backbone network because the vanilla BERT cannot handle well long documents (>2000 to kens). One issue shared across all these approaches is that they are over specific to the ICD code assignment task, losing generality to give the whole document-level and sentence-level embedding. As a result, it is not straight-forward to direct them to other downstream NLU tasks. Motivated by these observations, we propose Medical Document BERT (MDBERT) for long medical document understanding tasks. MDBERT is not only effective in learning representations at different levels of semantics but efficient in encoding long documents by leveraging a bottom-up hierarchical architecture. Compared to vanilla BERT solutions: 1, MDBERT boosts the performance up to relatively 20% on the MIMIC-III dataset, making it comparable to current SOTA solutions; 2, it cuts the computational complexity on self-attention modules to less than 1/100. Other than the ICD code assignment, we conduct a variety of other NLU tasks on a large commercial dataset named as TrialTrove, to showcase MDBERT's strength in delivering different levels of semantics.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube