Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Survey on Bias and Fairness in Natural Language Processing (2204.09591v1)

Published 6 Mar 2022 in cs.CL and cs.AI

Abstract: As NLP models become more integrated with the everyday lives of people, it becomes important to examine the social effect that the usage of these systems has. While these models understand language and have increased accuracy on difficult downstream tasks, there is evidence that these models amplify gender, racial and cultural stereotypes and lead to a vicious cycle in many settings. In this survey, we analyze the origins of biases, the definitions of fairness, and how different subfields of NLP mitigate bias. We finally discuss how future studies can work towards eradicating pernicious biases from NLP algorithms.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)