Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Improved Group Robustness via Classifier Retraining on Independent Splits (2204.09583v3)

Published 20 Apr 2022 in cs.LG

Abstract: Deep neural networks trained by minimizing the average risk can achieve strong average performance. Still, their performance for a subgroup may degrade if the subgroup is underrepresented in the overall data population. Group distributionally robust optimization (Sagawa et al., 2020a), or group DRO in short, is a widely used baseline for learning models with strong worst-group performance. We note that this method requires group labels for every example at training time and can overfit to small groups, requiring strong regularization. Given a limited amount of group labels at training time, Just Train Twice (Liu et al., 2021), or JTT in short, is a two-stage method that infers a pseudo group label for every unlabeled example first, then applies group DRO based on the inferred group labels. The inference process is also sensitive to overfitting, sometimes involving additional hyperparameters. This paper designs a simple method based on the idea of classifier retraining on independent splits of the training data. We find that using a novel sample-splitting procedure achieves robust worst-group performance in the fine-tuning step. When evaluated on benchmark image and text classification tasks, our approach consistently performs favorably to group DRO, JTT, and other strong baselines when either group labels are available during training or are only given in validation sets. Importantly, our method only relies on a single hyperparameter, which adjusts the fraction of labels used for training feature extractors vs. training classification layers. We justify the rationale of our splitting scheme with a generalization-bound analysis of the worst-group loss.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.