Papers
Topics
Authors
Recent
2000 character limit reached

SILVR: A Synthetic Immersive Large-Volume Plenoptic Dataset (2204.09523v1)

Published 20 Apr 2022 in cs.GR

Abstract: In six-degrees-of-freedom light-field (LF) experiences, the viewer's freedom is limited by the extent to which the plenoptic function was sampled. Existing LF datasets represent only small portions of the plenoptic function, such that they either cover a small volume, or they have limited field of view. Therefore, we propose a new LF image dataset "SILVR" that allows for six-degrees-of-freedom navigation in much larger volumes while maintaining full panoramic field of view. We rendered three different virtual scenes in various configurations, where the number of views ranges from 642 to 2226. One of these scenes (called Zen Garden) is a novel scene, and is made publicly available. We chose to position the virtual cameras closely together in large cuboid and spherical organisations ($2.2m3$ to $48m3$), equipped with 180{\deg} fish-eye lenses. Every view is rendered to a color image and depth map of 2048px $\times$ 2048px. Additionally, we present the software used to automate the multi-view rendering process, as well as a lens-reprojection tool that converts between images with panoramic or fish-eye projection to a standard rectilinear (i.e., perspective) projection. Finally, we demonstrate how the proposed dataset and software can be used to evaluate LF coding/rendering techniques(in this case for training NeRFs with instant-ngp). As such, we provide the first publicly-available LF dataset for large volumes of light with full panoramic field of view

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.