A Survey on Neural Abstractive Summarization Methods and Factual Consistency of Summarization (2204.09519v1)
Abstract: Automatic summarization is the process of shortening a set of textual data computationally, to create a subset (a summary) that represents the most important pieces of information in the original text. Existing summarization methods can be roughly divided into two types: extractive and abstractive. An extractive summarizer explicitly selects text snippets (words, phrases, sentences, etc.) from the source document, while an abstractive summarizer generates novel text snippets to convey the most salient concepts prevalent in the source.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.