Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Survey on Neural Abstractive Summarization Methods and Factual Consistency of Summarization (2204.09519v1)

Published 20 Apr 2022 in cs.CL

Abstract: Automatic summarization is the process of shortening a set of textual data computationally, to create a subset (a summary) that represents the most important pieces of information in the original text. Existing summarization methods can be roughly divided into two types: extractive and abstractive. An extractive summarizer explicitly selects text snippets (words, phrases, sentences, etc.) from the source document, while an abstractive summarizer generates novel text snippets to convey the most salient concepts prevalent in the source.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)