Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Solving The Long-Tailed Problem via Intra- and Inter-Category Balance (2204.09234v2)

Published 20 Apr 2022 in cs.CV

Abstract: Benchmark datasets for visual recognition assume that data is uniformly distributed, while real-world datasets obey long-tailed distribution. Current approaches handle the long-tailed problem to transform the long-tailed dataset to uniform distribution by re-sampling or re-weighting strategies. These approaches emphasize the tail classes but ignore the hard examples in head classes, which result in performance degradation. In this paper, we propose a novel gradient harmonized mechanism with category-wise adaptive precision to decouple the difficulty and sample size imbalance in the long-tailed problem, which are correspondingly solved via intra- and inter-category balance strategies. Specifically, intra-category balance focuses on the hard examples in each category to optimize the decision boundary, while inter-category balance aims to correct the shift of decision boundary by taking each category as a unit. Extensive experiments demonstrate that the proposed method consistently outperforms other approaches on all the datasets.

Citations (4)

Summary

We haven't generated a summary for this paper yet.