Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Accelerating Inhibitor Discovery With A Deep Generative Foundation Model: Validation for SARS-CoV-2 Drug Targets (2204.09042v3)

Published 19 Apr 2022 in q-bio.QM, cs.LG, q-bio.BM, and stat.ML

Abstract: The discovery of novel inhibitor molecules for emerging drug-target proteins is widely acknowledged as a challenging inverse design problem: Exhaustive exploration of the vast chemical search space is impractical, especially when the target structure or active molecules are unknown. Here we validate experimentally the broad utility of a deep generative framework trained at-scale on protein sequences, small molecules, and their mutual interactions -- that is unbiased toward any specific target. As demonstrators, we consider two dissimilar and relevant SARS-CoV-2 targets: the main protease and the spike protein (receptor binding domain, RBD). To perform target-aware design of novel inhibitor molecules, a protein sequence-conditioned sampling on the generative foundation model is performed. Despite using only the target sequence information, and without performing any target-specific adaptation of the generative model, micromolar-level inhibition was observed in in vitro experiments for two candidates out of only four synthesized for each target. The most potent spike RBD inhibitor also exhibited activity against several variants in live virus neutralization assays. These results therefore establish that a single, broadly deployable generative foundation model for accelerated hit discovery is effective and efficient, even in the most general case where neither target structure nor binder information is available.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.