Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Label Efficient Regularization and Propagation for Graph Node Classification (2204.08646v2)

Published 19 Apr 2022 in cs.LG and cs.AI

Abstract: An enhanced label propagation (LP) method called GraphHop was proposed recently. It outperforms graph convolutional networks (GCNs) in the semi-supervised node classification task on various networks. Although the performance of GraphHop was explained intuitively with joint node attribute and label signal smoothening, its rigorous mathematical treatment is lacking. In this paper, we propose a label efficient regularization and propagation (LERP) framework for graph node classification, and present an alternate optimization procedure for its solution. Furthermore, we show that GraphHop only offers an approximate solution to this framework and has two drawbacks. First, it includes all nodes in the classifier training without taking the reliability of pseudo-labeled nodes into account in the label update step. Second, it provides a rough approximation to the optimum of a subproblem in the label aggregation step. Based on the LERP framework, we propose a new method, named the LERP method, to solve these two shortcomings. LERP determines reliable pseudo-labels adaptively during the alternate optimization and provides a better approximation to the optimum with computational efficiency. Theoretical convergence of LERP is guaranteed. Extensive experiments are conducted to demonstrate the effectiveness and efficiency of LERP. That is, LERP outperforms all benchmarking methods, including GraphHop, consistently on five test datasets and an object recognition task at extremely low label rates (i.e., 1, 2, 4, 8, 16, and 20 labeled samples per class).

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube