Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

DeepCore: A Comprehensive Library for Coreset Selection in Deep Learning (2204.08499v3)

Published 18 Apr 2022 in cs.LG and cs.CV

Abstract: Coreset selection, which aims to select a subset of the most informative training samples, is a long-standing learning problem that can benefit many downstream tasks such as data-efficient learning, continual learning, neural architecture search, active learning, etc. However, many existing coreset selection methods are not designed for deep learning, which may have high complexity and poor generalization performance. In addition, the recently proposed methods are evaluated on models, datasets, and settings of different complexities. To advance the research of coreset selection in deep learning, we contribute a comprehensive code library, namely DeepCore, and provide an empirical study on popular coreset selection methods on CIFAR10 and ImageNet datasets. Extensive experiments on CIFAR10 and ImageNet datasets verify that, although various methods have advantages in certain experiment settings, random selection is still a strong baseline.

Citations (102)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.