Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Non-intrusive reduced-order modeling using convolutional autoencoders (2204.08280v1)

Published 9 Apr 2022 in math.NA and cs.NA

Abstract: The use of reduced-order models (ROMs) in physics-based modeling and simulation almost always involves the use of linear reduced basis (RB) methods such as the proper orthogonal decomposition (POD). For some nonlinear problems, linear RB methods perform poorly, failing to provide an efficient subspace for the solution space. The use of nonlinear manifolds for ROMs has gained traction in recent years, showing increased performance for certain nonlinear problems over linear methods. Deep learning has been popular to this end through the use of autoencoders for providing a nonlinear trial manifold for the solution space. In this work, we present a non-intrusive ROM framework for steady-state parameterized partial differential equations (PDEs) that uses convolutional autoencoders (CAEs) to provide a nonlinear solution manifold and is augmented by Gaussian process regression (GPR) to approximate the expansion coefficients of the reduced model. When applied to a numerical example involving the steady incompressible Navier-Stokes equations solving a lid-driven cavity problem, it is shown that the proposed ROM offers greater performance in prediction of full-order states when compared to a popular method employing POD and GPR over a number of ROM dimensions.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.