Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

In Defense of Subspace Tracker: Orthogonal Embedding for Visual Tracking (2204.07927v1)

Published 17 Apr 2022 in cs.CV

Abstract: The paper focuses on a classical tracking model, subspace learning, grounded on the fact that the targets in successive frames are considered to reside in a low-dimensional subspace or manifold due to the similarity in their appearances. In recent years, a number of subspace trackers have been proposed and obtained impressive results. Inspired by the most recent results that the tracking performance is boosted by the subspace with discrimination capability learned over the recently localized targets and their immediately surrounding background, this work aims at solving such a problem: how to learn a robust low-dimensional subspace to accurately and discriminatively represent these target and background samples. To this end, a discriminative approach, which reliably separates the target from its surrounding background, is injected into the subspace learning by means of joint learning, achieving a dimension-adaptive subspace with superior discrimination capability. The proposed approach is extensively evaluated and compared with the state-of-the-art trackers on four popular tracking benchmarks. The experimental results demonstrate that the proposed tracker performs competitively against its counterparts. In particular, it achieves more than 9% performance increase compared with the state-of-the-art subspace trackers.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.