Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Semantic interpretation for convolutional neural networks: What makes a cat a cat? (2204.07724v1)

Published 16 Apr 2022 in cs.LG, cs.AI, and cs.CV

Abstract: The interpretability of deep neural networks has attracted increasing attention in recent years, and several methods have been created to interpret the "black box" model. Fundamental limitations remain, however, that impede the pace of understanding the networks, especially the extraction of understandable semantic space. In this work, we introduce the framework of semantic explainable AI (S-XAI), which utilizes row-centered principal component analysis to obtain the common traits from the best combination of superpixels discovered by a genetic algorithm, and extracts understandable semantic spaces on the basis of discovered semantically sensitive neurons and visualization techniques. Statistical interpretation of the semantic space is also provided, and the concept of semantic probability is proposed for the first time. Our experimental results demonstrate that S-XAI is effective in providing a semantic interpretation for the CNN, and offers broad usage, including trustworthiness assessment and semantic sample searching.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.