Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Streaming Align-Refine for Non-autoregressive Deliberation (2204.07556v1)

Published 15 Apr 2022 in cs.CL, cs.LG, and eess.AS

Abstract: We propose a streaming non-autoregressive (non-AR) decoding algorithm to deliberate the hypothesis alignment of a streaming RNN-T model. Our algorithm facilitates a simple greedy decoding procedure, and at the same time is capable of producing the decoding result at each frame with limited right context, thus enjoying both high efficiency and low latency. These advantages are achieved by converting the offline Align-Refine algorithm to be streaming-compatible, with a novel transformer decoder architecture that performs local self-attentions for both text and audio, and a time-aligned cross-attention at each layer. Furthermore, we perform discriminative training of our model with the minimum word error rate (MWER) criterion, which has not been done in the non-AR decoding literature. Experiments on voice search datasets and Librispeech show that with reasonable right context, our streaming model performs as well as the offline counterpart, and discriminative training leads to further WER gain when the first-pass model has small capacity.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.