Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How to Use K-means for Big Data Clustering? (2204.07485v3)

Published 14 Apr 2022 in cs.LG

Abstract: K-means plays a vital role in data mining and is the simplest and most widely used algorithm under the Euclidean Minimum Sum-of-Squares Clustering (MSSC) model. However, its performance drastically drops when applied to vast amounts of data. Therefore, it is crucial to improve K-means by scaling it to big data using as few of the following computational resources as possible: data, time, and algorithmic ingredients. We propose a new parallel scheme of using K-means and K-means++ algorithms for big data clustering that satisfies the properties of a ``true big data'' algorithm and outperforms the classical and recent state-of-the-art MSSC approaches in terms of solution quality and runtime. The new approach naturally implements global search by decomposing the MSSC problem without using additional metaheuristics. This work shows that data decomposition is the basic approach to solve the big data clustering problem. The empirical success of the new algorithm allowed us to challenge the common belief that more data is required to obtain a good clustering solution. Moreover, the present work questions the established trend that more sophisticated hybrid approaches and algorithms are required to obtain a better clustering solution.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Rustam Mussabayev (7 papers)
  2. Nenad Mladenovic (5 papers)
  3. Bassem Jarboui (1 paper)
  4. Ravil Mussabayev (9 papers)
Citations (32)

Summary

We haven't generated a summary for this paper yet.