Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Detecting Violence in Video Based on Deep Features Fusion Technique (2204.07443v1)

Published 15 Apr 2022 in cs.CV

Abstract: With the rapid growth of surveillance cameras in many public places to mon-itor human activities such as in malls, streets, schools and, prisons, there is a strong demand for such systems to detect violence events automatically. Au-tomatic analysis of video to detect violence is significant for law enforce-ment. Moreover, it helps to avoid any social, economic and environmental damages. Mostly, all systems today require manual human supervisors to de-tect violence scenes in the video which is inefficient and inaccurate. in this work, we interest in physical violence that involved two persons or more. This work proposed a novel method to detect violence using a fusion tech-nique of two significantly different convolutional neural networks (CNNs) which are AlexNet and SqueezeNet networks. Each network followed by separate Convolution Long Short Term memory (ConvLSTM) to extract ro-bust and richer features from a video in the final hidden state. Then, making a fusion of these two obtained states and fed to the max-pooling layer. Final-ly, features were classified using a series of fully connected layers and soft-max classifier. The performance of the proposed method is evaluated using three standard benchmark datasets in terms of detection accuracy: Hockey Fight dataset, Movie dataset and Violent Flow dataset. The results show an accuracy of 97%, 100%, and 96% respectively. A comparison of the results with the state of the art techniques revealed the promising capability of the proposed method in recognizing violent videos.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube