Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Towards Fine-grained Causal Reasoning and QA (2204.07408v1)

Published 15 Apr 2022 in cs.CL, cs.AI, and cs.LO

Abstract: Understanding causality is key to the success of NLP applications, especially in high-stakes domains. Causality comes in various perspectives such as enable and prevent that, despite their importance, have been largely ignored in the literature. This paper introduces a novel fine-grained causal reasoning dataset and presents a series of novel predictive tasks in NLP, such as causality detection, event causality extraction, and Causal QA. Our dataset contains human annotations of 25K cause-effect event pairs and 24K question-answering pairs within multi-sentence samples, where each can have multiple causal relationships. Through extensive experiments and analysis, we show that the complex relations in our dataset bring unique challenges to state-of-the-art methods across all three tasks and highlight potential research opportunities, especially in developing "causal-thinking" methods.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.