Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Graph Pooling for Graph Neural Networks: Progress, Challenges, and Opportunities (2204.07321v2)

Published 15 Apr 2022 in cs.LG

Abstract: Graph neural networks have emerged as a leading architecture for many graph-level tasks, such as graph classification and graph generation. As an essential component of the architecture, graph pooling is indispensable for obtaining a holistic graph-level representation of the whole graph. Although a great variety of methods have been proposed in this promising and fast-developing research field, to the best of our knowledge, little effort has been made to systematically summarize these works. To set the stage for the development of future works, in this paper, we attempt to fill this gap by providing a broad review of recent methods for graph pooling. Specifically, 1) we first propose a taxonomy of existing graph pooling methods with a mathematical summary for each category; 2) then, we provide an overview of the libraries related to graph pooling, including the commonly used datasets, model architectures for downstream tasks, and open-source implementations; 3) next, we further outline the applications that incorporate the idea of graph pooling in a variety of domains; 4) finally, we discuss certain critical challenges facing current studies and share our insights on future potential directions for research on the improvement of graph pooling.

Citations (72)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube