Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Testing distributional assumptions of learning algorithms (2204.07196v2)

Published 14 Apr 2022 in cs.LG and cs.DS

Abstract: There are many high dimensional function classes that have fast agnostic learning algorithms when assumptions on the distribution of examples can be made, such as Gaussianity or uniformity over the domain. But how can one be confident that data indeed satisfies such assumption, so that one can trust in output quality of the agnostic learning algorithm? We propose a model by which to systematically study the design of tester-learner pairs $(\mathcal{A},\mathcal{T})$, such that if the distribution on examples in the data passes the tester $\mathcal{T}$ then one can safely trust the output of the agnostic learner $\mathcal{A}$ on the data. To demonstrate the power of the model, we apply it to the classical problem of agnostically learning halfspaces under the standard Gaussian distribution and present a tester-learner pair with combined run-time of $n{\tilde{O}(1/\epsilon4)}$. This qualitatively matches that of the best known ordinary agnostic learning algorithms for this task. In contrast, finite sample Gaussianity testers do not exist for the $L_1$ and EMD distance measures. A key step is to show that half-spaces are well-approximated with low-degree polynomials relative to distributions with low-degree moments close to those of a Gaussian. We also go beyond spherically-symmetric distributions, and give a tester-learner pair for halfspaces under the uniform distribution on ${0,1}n$ with combined run-time of $n{\tilde{O}(1/\epsilon4)}$. This is achieved using polynomial approximation theory and critical index machinery. We also show there exist some well-studied settings where $2{\tilde{O}(\sqrt{n})}$ run-time agnostic learning algorithms are available, yet the combined run-times of tester-learner pairs must be as high as $2{\Omega(n)}$. On that account, the design of tester-learner pairs is a research direction in its own right independent of standard agnostic learning.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com