Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Weakly Supervised Attended Object Detection Using Gaze Data as Annotations (2204.07090v1)

Published 14 Apr 2022 in cs.CV

Abstract: We consider the problem of detecting and recognizing the objects observed by visitors (i.e., attended objects) in cultural sites from egocentric vision. A standard approach to the problem involves detecting all objects and selecting the one which best overlaps with the gaze of the visitor, measured through a gaze tracker. Since labeling large amounts of data to train a standard object detector is expensive in terms of costs and time, we propose a weakly supervised version of the task which leans only on gaze data and a frame-level label indicating the class of the attended object. To study the problem, we present a new dataset composed of egocentric videos and gaze coordinates of subjects visiting a museum. We hence compare three different baselines for weakly supervised attended object detection on the collected data. Results show that the considered approaches achieve satisfactory performance in a weakly supervised manner, which allows for significant time savings with respect to a fully supervised detector based on Faster R-CNN. To encourage research on the topic, we publicly release the code and the dataset at the following url: https://iplab.dmi.unict.it/WS_OBJ_DET/

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.