Papers
Topics
Authors
Recent
2000 character limit reached

Procedural Content Generation using Neuroevolution and Novelty Search for Diverse Video Game Levels (2204.06934v1)

Published 14 Apr 2022 in cs.NE

Abstract: Procedurally generated video game content has the potential to drastically reduce the content creation budget of game developers and large studios. However, adoption is hindered by limitations such as slow generation, as well as low quality and diversity of content. We introduce an evolutionary search-based approach for evolving level generators using novelty search to procedurally generate diverse levels in real time, without requiring training data or detailed domain-specific knowledge. We test our method on two domains, and our results show an order of magnitude speedup in generation time compared to existing methods while obtaining comparable metric scores. We further demonstrate the ability to generalise to arbitrary-sized levels without retraining.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube