Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

A Fixed-Parameter Algorithm for the Kneser Problem (2204.06761v2)

Published 14 Apr 2022 in cs.DS, cs.CC, cs.DM, and math.CO

Abstract: The Kneser graph $K(n,k)$ is defined for integers $n$ and $k$ with $n \geq 2k$ as the graph whose vertices are all the $k$-subsets of ${1,2,\ldots,n}$ where two such sets are adjacent if they are disjoint. A classical result of Lov\'asz asserts that the chromatic number of $K(n,k)$ is $n-2k+2$. In the computational Kneser problem, we are given an oracle access to a coloring of the vertices of $K(n,k)$ with $n-2k+1$ colors, and the goal is to find a monochromatic edge. We present a randomized algorithm for the Kneser problem with running time $n{O(1)} \cdot k{O(k)}$. This shows that the problem is fixed-parameter tractable with respect to the parameter $k$. The analysis involves structural results on intersecting families and on induced subgraphs of Kneser graphs. We also study the Agreeable-Set problem of assigning a small subset of a set of $m$ items to a group of $\ell$ agents, so that all agents value the subset at least as much as its complement. As an application of our algorithm for the Kneser problem, we obtain a randomized polynomial-time algorithm for the Agreeable-Set problem for instances that satisfy $\ell \geq m - O(\frac{\log m}{\log \log m})$. We further show that the Agreeable-Set problem is at least as hard as a variant of the Kneser problem with an extended access to the input coloring.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)