Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Character-focused Video Thumbnail Retrieval (2204.06563v1)

Published 13 Apr 2022 in cs.CV and cs.LG

Abstract: We explore retrieving character-focused video frames as candidates for being video thumbnails. To evaluate each frame of the video based on the character(s) present in it, characters (faces) are evaluated in two aspects: Facial-expression: We train a CNN model to measure whether a face has an acceptable facial expression for being in a video thumbnail. This model is trained to distinguish faces extracted from artworks/thumbnails, from faces extracted from random frames of videos. Prominence and interactions: Character(s) in the thumbnail should be important character(s) in the video, to prevent the algorithm from suggesting non-representative frames as candidates. We use face clustering to identify the characters in the video, and form a graph in which the prominence (frequency of appearance) of the character(s), and their interactions (co-occurrence) are captured. We use this graph to infer the relevance of the characters present in each candidate frame. Once every face is scored based on the two criteria above, we infer frame level scores by combining the scores for all the faces within a frame.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Shervin Ardeshir (15 papers)
  2. Nagendra Kamath (4 papers)
  3. Hossein Taghavi (1 paper)

Summary

We haven't generated a summary for this paper yet.