Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Bayesian Negative Sampling for Recommendation (2204.06520v3)

Published 2 Apr 2022 in cs.IR, cs.AI, and cs.LG

Abstract: How to sample high quality negative instances from unlabeled data, i.e., negative sampling, is important for training implicit collaborative filtering and contrastive learning models. Although previous studies have proposed some approaches to sample informative instances, few has been done to discriminating false negative from true negative for unbiased negative sampling. On the basis of our order relation analysis of negatives' scores, we first derive the class conditional density of true negatives and that of false negatives. We next design a Bayesian classifier for negative classification, from which we define a model-agnostic posterior probability estimate of an instance being true negative as a quantitative negative signal measure. We also propose a Bayesian optimal sampling rule to sample high-quality negatives. The proposed Bayesian Negative Sampling (BNS) algorithm has a linear time complexity. Experimental studies validate the superiority of BNS over the peers in terms of better sampling quality and better recommendation performance.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)