Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Receding Neuron Importances for Structured Pruning (2204.06404v1)

Published 13 Apr 2022 in cs.LG and cs.CV

Abstract: Structured pruning efficiently compresses networks by identifying and removing unimportant neurons. While this can be elegantly achieved by applying sparsity-inducing regularisation on BatchNorm parameters, an L1 penalty would shrink all scaling factors rather than just those of superfluous neurons. To tackle this issue, we introduce a simple BatchNorm variation with bounded scaling parameters, based on which we design a novel regularisation term that suppresses only neurons with low importance. Under our method, the weights of unnecessary neurons effectively recede, producing a polarised bimodal distribution of importances. We show that neural networks trained this way can be pruned to a larger extent and with less deterioration. We one-shot prune VGG and ResNet architectures at different ratios on CIFAR and ImagenNet datasets. In the case of VGG-style networks, our method significantly outperforms existing approaches particularly under a severe pruning regime.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)