Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

CoDGraD: A Code-based Distributed Gradient Descent Scheme for Decentralized Convex Optimization (2204.06344v1)

Published 13 Apr 2022 in eess.SY, cs.SY, and math.OC

Abstract: In this paper, we consider a large network containing many regions such that each region is equipped with a worker with some data processing and communication capability. For such a network, some workers may become stragglers due to the failure or heavy delay on computing or communicating. To resolve the above straggling problem, a coded scheme that introduces certain redundancy for every worker was recently proposed, and a gradient coding paradigm was developed to solve convex optimization problems when the network has a centralized fusion center. In this paper, we propose an iterative distributed algorithm, referred as Code-Based Distributed Gradient Descent algorithm (CoDGraD), to solve convex optimization problems over distributed networks. In each iteration of the proposed algorithm, an active worker shares the coded local gradient and approximated solution of the convex optimization problem with non-straggling workers at the adjacent regions only. In this paper, we also provide the consensus and convergence analysis for the CoDGraD algorithm and we demonstrate its performance via numerical simulations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube