Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 71 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Towards A Critical Evaluation of Robustness for Deep Learning Backdoor Countermeasures (2204.06273v1)

Published 13 Apr 2022 in cs.CR and cs.AI

Abstract: Since Deep Learning (DL) backdoor attacks have been revealed as one of the most insidious adversarial attacks, a number of countermeasures have been developed with certain assumptions defined in their respective threat models. However, the robustness of these countermeasures is inadvertently ignored, which can introduce severe consequences, e.g., a countermeasure can be misused and result in a false implication of backdoor detection. For the first time, we critically examine the robustness of existing backdoor countermeasures with an initial focus on three influential model-inspection ones that are Neural Cleanse (S&P'19), ABS (CCS'19), and MNTD (S&P'21). Although the three countermeasures claim that they work well under their respective threat models, they have inherent unexplored non-robust cases depending on factors such as given tasks, model architectures, datasets, and defense hyper-parameter, which are \textit{not even rooted from delicate adaptive attacks}. We demonstrate how to trivially bypass them aligned with their respective threat models by simply varying aforementioned factors. Particularly, for each defense, formal proofs or empirical studies are used to reveal its two non-robust cases where it is not as robust as it claims or expects, especially the recent MNTD. This work highlights the necessity of thoroughly evaluating the robustness of backdoor countermeasures to avoid their misleading security implications in unknown non-robust cases.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube