Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Generalization Error Bounds for Multiclass Sparse Linear Classifiers (2204.06264v2)

Published 13 Apr 2022 in math.ST, cs.LG, stat.ME, stat.ML, and stat.TH

Abstract: We consider high-dimensional multiclass classification by sparse multinomial logistic regression. Unlike binary classification, in the multiclass setup one can think about an entire spectrum of possible notions of sparsity associated with different structural assumptions on the regression coefficients matrix. We propose a computationally feasible feature selection procedure based on penalized maximum likelihood with convex penalties capturing a specific type of sparsity at hand. In particular, we consider global sparsity, double row-wise sparsity, and low-rank sparsity, and show that with the properly chosen tuning parameters the derived plug-in classifiers attain the minimax generalization error bounds (in terms of misclassification excess risk) within the corresponding classes of multiclass sparse linear classifiers. The developed approach is general and can be adapted to other types of sparsity as well.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.