Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Energy Complexity of Regular Languages (2204.06025v2)

Published 12 Apr 2022 in cs.CC

Abstract: Each step that results in a bit of information being forgotten'' by a computing device has an intrinsic energy cost. Although any Turing machine can be rewritten to be thermodynamically reversible without changing the recognized language, finite automata that are restricted to scan their input once inreal-time'' fashion can only recognize the members of a proper subset of the class of regular languages in this reversible manner. We study the energy expenditure associated with the computations of deterministic and quantum finite automata. We prove that zero-error quantum finite automata have no advantage over their classical deterministic counterparts in terms of the maximum obligatory thermodynamic cost associated by any step during the recognition of different regular languages. We also demonstrate languages for which ``error can be traded for energy'', i.e. whose zero-error recognition is associated with computation steps having provably bigger obligatory energy cost when compared to their bounded-error recognition by real-time finite-memory quantum devices. We show that regular languages can be classified according to the intrinsic energy requirements on the recognizing automaton as a function of input length, and prove upper and lower bounds.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube