Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Undirected $(1+\varepsilon)$-Shortest Paths via Minor-Aggregates: Near-Optimal Deterministic Parallel & Distributed Algorithms (2204.05874v2)

Published 12 Apr 2022 in cs.DS and cs.DC

Abstract: This paper presents near-optimal deterministic parallel and distributed algorithms for computing $(1+\varepsilon)$-approximate single-source shortest paths in any undirected weighted graph. On a high level, we deterministically reduce this and other shortest-path problems to $\tilde{O}(1)$ Minor-Aggregations. A Minor-Aggregation computes an aggregate (e.g., max or sum) of node-values for every connected component of some subgraph. Our reduction immediately implies: Optimal deterministic parallel (PRAM) algorithms with $\tilde{O}(1)$ depth and near-linear work. Universally-optimal deterministic distributed (CONGEST) algorithms, whenever deterministic Minor-Aggregate algorithms exist. For example, an optimal $\tilde{O}(HopDiameter(G))$-round deterministic CONGEST algorithm for excluded-minor networks. Several novel tools developed for the above results are interesting in their own right: A local iterative approach for reducing shortest path computations "up to distance $D$" to computing low-diameter decompositions "up to distance $\frac{D}{2}$". Compared to the recursive vertex-reduction approach of [Li20], our approach is simpler, suitable for distributed algorithms, and eliminates many derandomization barriers. A simple graph-based $\tilde{O}(1)$-competitive $\ell_1$-oblivious routing based on low-diameter decompositions that can be evaluated in near-linear work. The previous such routing [ZGY+20] was $n{o(1)}$-competitive and required $n{o(1)}$ more work. A deterministic algorithm to round any fractional single-source transshipment flow into an integral tree solution. The first distributed algorithms for computing Eulerian orientations.

Citations (35)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube