Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Distributed learning optimisation of Cox models can leak patient data: Risks and solutions (2204.05856v1)

Published 12 Apr 2022 in stat.ML, cs.CR, and cs.LG

Abstract: Medical data are often highly sensitive, and frequently there are missing data. Due to the data's sensitive nature, there is an interest in creating modelling methods where the data are kept in each local centre to preserve their privacy, but yet the model can be trained on and learn from data across multiple centres. Such an approach might be distributed machine learning (federated learning, collaborative learning) in which a model is iteratively calculated based on aggregated local model information from each centre. However, even though no specific data are leaving the centre, there is a potential risk that the exchanged information is sufficient to reconstruct all or part of the patient data, which would hamper the safety-protecting rationale idea of distributed learning. This paper demonstrates that the optimisation of a Cox survival model can lead to patient data leakage. Following this, we suggest a way to optimise and validate a Cox model that avoids these problems in a secure way. The feasibility of the suggested method is demonstrated in a provided Matlab code that also includes methods for handling missing data.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube