Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Generative Negative Replay for Continual Learning (2204.05842v1)

Published 12 Apr 2022 in cs.LG, cs.CV, and stat.ML

Abstract: Learning continually is a key aspect of intelligence and a necessary ability to solve many real-life problems. One of the most effective strategies to control catastrophic forgetting, the Achilles' heel of continual learning, is storing part of the old data and replaying them interleaved with new experiences (also known as the replay approach). Generative replay, which is using generative models to provide replay patterns on demand, is particularly intriguing, however, it was shown to be effective mainly under simplified assumptions, such as simple scenarios and low-dimensional data. In this paper, we show that, while the generated data are usually not able to improve the classification accuracy for the old classes, they can be effective as negative examples (or antagonists) to better learn the new classes, especially when the learning experiences are small and contain examples of just one or few classes. The proposed approach is validated on complex class-incremental and data-incremental continual learning scenarios (CORe50 and ImageNet-1000) composed of high-dimensional data and a large number of training experiences: a setup where existing generative replay approaches usually fail.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.