Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Cross-Attention-Driven Spatial-Spectral Graph Convolutional Network for Hyperspectral Image Classification (2204.05823v1)

Published 12 Apr 2022 in cs.CV and cs.AI

Abstract: Recently, graph convolutional networks (GCNs) have been developed to explore spatial relationship between pixels, achieving better classification performance of hyperspectral images (HSIs). However, these methods fail to sufficiently leverage the relationship between spectral bands in HSI data. As such, we propose an adaptive cross-attention-driven spatial-spectral graph convolutional network (ACSS-GCN), which is composed of a spatial GCN (Sa-GCN) subnetwork, a spectral GCN (Se-GCN) subnetwork, and a graph cross-attention fusion module (GCAFM). Specifically, Sa-GCN and Se-GCN are proposed to extract the spatial and spectral features by modeling correlations between spatial pixels and between spectral bands, respectively. Then, by integrating attention mechanism into information aggregation of graph, the GCAFM, including three parts, i.e., spatial graph attention block, spectral graph attention block, and fusion block, is designed to fuse the spatial and spectral features and suppress noise interference in Sa-GCN and Se-GCN. Moreover, the idea of the adaptive graph is introduced to explore an optimal graph through back propagation during the training process. Experiments on two HSI data sets show that the proposed method achieves better performance than other classification methods.

Citations (19)

Summary

We haven't generated a summary for this paper yet.