Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Deep Reinforcement Learning Based Semi-Autonomous Control for Robotic Surgery (2204.05433v1)

Published 11 Apr 2022 in cs.RO and cs.AI

Abstract: In recent decades, the tremendous benefits surgical robots have brought to surgeons and patients have been witnessed. With the dexterous operation and the great precision, surgical robots can offer patients less recovery time and less hospital stay. However, the controls for current surgical robots in practical usage are fully carried out by surgeons via teleoperation. During the surgery process, there exists a lot of repetitive but simple manipulation, which can cause unnecessary fatigue to the surgeons. In this paper, we proposed a deep reinforcement learning-based semi-autonomous control framework for robotic surgery. The user study showed that the framework can reduce the completion time by 19.1% and the travel length by 58.7%.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.