Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Comparative Survey of Multigraph Integration Methods for Holistic Brain Connectivity Mapping (2204.05110v1)

Published 5 Apr 2022 in q-bio.NC, cs.AI, and cs.LG

Abstract: One of the greatest scientific challenges in network neuroscience is to create a representative map of a population of heterogeneous brain networks, which acts as a connectional fingerprint. The connectional brain template (CBT), also named network atlas, presents a powerful tool for capturing the most representative and discriminative traits of a given population while preserving its topological patterns. The idea of a CBT is to integrate a population of heterogeneous brain connectivity networks, derived from different neuroimaging modalities or brain views (e.g., structural and functional), into a unified holistic representation. Here we review current state-of-the-art methods designed to estimate well-centered and representative CBT for populations of single-view and multi-view brain networks. We start by reviewing each CBT learning method, then we introduce the evaluation measures to compare CBT representativeness of populations generated by single-view and multigraph integration methods, separately, based on the following criteria: centeredness, biomarker-reproducibility, node-level similarity, global-level similarity, and distance-based similarity. We demonstrate that the deep graph normalizer (DGN) method significantly outperforms other multi-graph and all single-view integration methods for estimating CBTs using a variety of healthy and disordered datasets in terms of centeredness, reproducibility (i.e., graph-derived biomarkers reproducibility that disentangle the typical from the atypical connectivity variability), and preserving the topological traits at both local and global graph-levels.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube