Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

RMFGP: Rotated Multi-fidelity Gaussian process with Dimension Reduction for High-dimensional Uncertainty Quantification (2204.04819v1)

Published 11 Apr 2022 in stat.ML and cs.LG

Abstract: Multi-fidelity modelling arises in many situations in computational science and engineering world. It enables accurate inference even when only a small set of accurate data is available. Those data often come from a high-fidelity model, which is computationally expensive. By combining the realizations of the high-fidelity model with one or more low-fidelity models, the multi-fidelity method can make accurate predictions of quantities of interest. This paper proposes a new dimension reduction framework based on rotated multi-fidelity Gaussian process regression and a Bayesian active learning scheme when the available precise observations are insufficient. By drawing samples from the trained rotated multi-fidelity model, the so-called supervised dimension reduction problems can be solved following the idea of the sliced average variance estimation (SAVE) method combined with a Gaussian process regression dimension reduction technique. This general framework we develop can effectively solve high-dimensional problems while the data are insufficient for applying traditional dimension reduction methods. Moreover, a more accurate surrogate Gaussian process model of the original problem can be obtained based on our trained model. The effectiveness of the proposed rotated multi-fidelity Gaussian process(RMFGP) model is demonstrated in four numerical examples. The results show that our method has better performance in all cases and uncertainty propagation analysis is performed for last two cases involving stochastic partial differential equations.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.