Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Beyond Cross-view Image Retrieval: Highly Accurate Vehicle Localization Using Satellite Image (2204.04752v2)

Published 10 Apr 2022 in cs.CV

Abstract: This paper addresses the problem of vehicle-mounted camera localization by matching a ground-level image with an overhead-view satellite map. Existing methods often treat this problem as cross-view image retrieval, and use learned deep features to match the ground-level query image to a partition (eg, a small patch) of the satellite map. By these methods, the localization accuracy is limited by the partitioning density of the satellite map (often in the order of tens meters). Departing from the conventional wisdom of image retrieval, this paper presents a novel solution that can achieve highly-accurate localization. The key idea is to formulate the task as pose estimation and solve it by neural-net based optimization. Specifically, we design a two-branch {CNN} to extract robust features from the ground and satellite images, respectively. To bridge the vast cross-view domain gap, we resort to a Geometry Projection module that projects features from the satellite map to the ground-view, based on a relative camera pose. Aiming to minimize the differences between the projected features and the observed features, we employ a differentiable Levenberg-Marquardt ({LM}) module to search for the optimal camera pose iteratively. The entire pipeline is differentiable and runs end-to-end. Extensive experiments on standard autonomous vehicle localization datasets have confirmed the superiority of the proposed method. Notably, e.g., starting from a coarse estimate of camera location within a wide region of 40m x 40m, with an 80% likelihood our method quickly reduces the lateral location error to be within 5m on a new KITTI cross-view dataset.

Citations (63)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.